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Evolutionary characteristics, biochemical
structure, and function impact of
MSTN gene
The myostatin (MSTN ) gene, also known as growth and
differentiation factor 8 (GDF8), plays a critical role in
regulating muscle mass in animals by negatively controlling
the number and size of skeletal myocytes. MSTN mutations
have been demonstrated to cause the double-muscling
(DBM) phenomenon in various species, including cattle,
sheep, mice, pigs, dogs, rabbits, and even humans.1 In this
study, we explored the evolutionary characteristics,
biochemical structure and function impacts of the sheep
MSTN gene (oMSTN ) using phylogenetic analysis, mutation
effect evaluation, residue conservation studies, structural
modeling, and proteineprotein docking. Our findings sug-
gest that the evolutionary characteristics and biochemical
structural features of oMSTN are closely tied to its func-
tional and clinical roles in regulating skeletal muscle
growth. We validated our hypothesis by creating MSTN
gene-edited sheep using CRISPR/Cas9 technology. These
results provide valuable insights for the preparation of an-
imal models and the rapid and effective improvement of
meat production. Furthermore, evaluating the effects of
MSTN inhibition in animal models with diverse human dis-
eases could support the development of MSTN inhibitors for
future clinical applications.

Phylogenetic and evolutionary conservation analyses
underscore the significant role of the “transforming growth
factor beta (TGFb)-like” domain in MSTN functionality.
Phylogenetic studies have revealed that MSTN is closely
related to GDF11 among the 11 GDFs and clustered into a
single clade. As members of the activin/inhibin subclass,
MSTN and GDF11 define a distinct subgroup within the
larger TGFb superfamily (Fig. 1A), consistent with previous
phylogenetic analyses.2 The amino acid sequence of the
mature MSTN protein, corresponding to the “TGFb-like”
domain, is conserved across species as divergent as humans
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and hooded crows (Fig. 1B). Residue conservation analysis
using ConSurf, coupled with structural characterization,
indicates that most amino acid positions in the TGFb su-
perfamily domain are highly conserved and evolve slowly
(Fig. 1C). Functional predictions of MSTN mutations using
PolyPhen-2, SIFT, and PROVEAN showed that mutations
affecting MSTN functionality were concentrated in these
highly conserved regions, likely disrupting polypeptide
binding.

The function of oMSTN was further explored through
secondary and tertiary structural predictions. The
conserved nature of the “TGFb-like” domain allowed us to
model the secondary and tertiary structures of oMSTN using
ENDscript (Fig. 1D, E) and the Phyre2 server (Fig. 1F), based
on structural data from MSTN and other TGFb family li-
gands. The oMSTN precursor protein consists of three
distinct domains and undergoes two independent proteo-
lytic processing events to become biologically active
(Fig. S1). After proteolysis, the C-terminal dimer of MSTN
remains within a latent complex with its propeptide and
other proteins. Previous studies demonstrated that trans-
genic mice expressing the MSTN propeptide (amino acids
1e267) exhibited reduced MSTN activity, indicating that
MSTN is negatively regulated by its propeptide. Addition-
ally, other binding proteins, such as follistatin, can bind to
the MSTN C-terminal dimer, inhibiting its receptor-binding
ability.2 These findings suggest that overexpressing MSTN
propeptide, in addition to MSTN knockouts, may serve as an
alternative strategy for increasing muscle mass in
mammals.

Proteineprotein docking analyses were performed to
investigate the interactions between oMSTN and its re-
ceptors. oMSTN likely signals via a mechanism analogous to
TGFb, involving the assembly of a hexameric signaling
complex composed of the dimeric ligand, two type I re-
ceptors, and two type II receptors3 (Fig. 1G). Mature oMSTN
interacts with cell surface receptors, including ALK4/ALK5
behalf of KeAi Communications Co., Ltd. This is an open access
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Figure 1 Evolutionary characteristics, biochemical structure features, and functions of oMSTN in regulating skeletal muscle
growth. (A) Phylogenetic analysis of MSTN and other vertebrate GDFs. A maximum likelihood phylogenetic tree of all known
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(type I receptors) and ACVR2A/ACVR2B (type II receptors)
(Fig. 1H; Fig. S2), initiating specific intracellular signaling
cascades via Smad2/3 proteins. Previous protein binding
and crosslinking studies have shown that MSTN preferen-
tially binds to ACVR2B. To explore this further, we pre-
dicted and analyzed oMSTN interactions with oACVR2B and
oALK4, focusing on heterodimeric interfaces. Analysis with
PDBePISA revealed that the binding interfaces were pre-
dominantly formed by residues in the highly conserved
TGFb superfamily region, highlighting its essential role in
receptor binding.

The biochemical structures of the signaling domains in
mature MSTN are critical to its function. As two highly similar
members of the TGFb family, earlier studies suggest that the
ligands of mature MSTN and mature GDF11 are functionally
indistinguishable, given their ability to bind to similar re-
ceptors and extracellular antagonists. However, MSTN has
been recognized as a negative regulator of muscle growth
and differentiation, whereas GDF11 is associated with
beneficial effects on age-related dysfunction. Evidence
supporting their functional divergence comes from genetic
modifications in mice. Replacing the full coding region of
MSTN with that of GDF11 produced mice lacking MSTN
functionality, while substituting two specific amino acids in
the fingertip region of GDF11 with corresponding MSTN res-
idues yielded a phenotype consistent with GDF11-deficient
mice.4 These findings demonstrate that structural and
biochemical differences in the signaling domains of mature
MSTN and GDF11 significantly contribute to their distinct
roles in mammalian development and organ physiology.

As a critical gene underlying DBM, MSTN functionality
has been strongly conserved across species. Increased
vertebrate GDFs was constructed using their full-length sequences
family represented in a unique color. Some branches are collapsed f
into an individual clade. Together, MSTN and GDF11 form a distin
MSTN clades of the phylogenetic tree. oMSTN is highly orthologous t
positions. Conservation grades of amino acid positions in the oMS
levels range from the most variable positions (grade 1, turquoise) to
low-confidence conservation levels are marked in light yellow. The n
(D) Predicted secondary structure of oMSTN. The secondary structu
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of pro-MSTN and mature MSTN are displayed rotated 180� counte
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activates ACVR1B/TbRI through transphosphorylation. Smad2 and S
and translocate to the nucleus to regulate target gene expression. A
can also activate Erk1/2 in the MAPK pathway via the Ras-MEK1 axis
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muscling resulting from mutations in functional domains
has been observed in cattle, sheep, and humans and in
targeted mutations in mice, sheep, pigs, dogs, and rabbits.
Mutations in MSTN’s coding sequence alter its bioactivity,
leading to DBM. For instance, the E291X mutation (a G-T
transition) in Marchigiana cattle, the C313Y mutation (a G-A
transition) in Piedmontese cattle, and an 11-nucleotide
deletion at nucleotide 821 in Belgian Blue cattle all lead to
DBM. In contrast, DBM in Texel sheep arises from a mutation
in the 30 untranslated region (G-A transition) of MSTN,
which creates target sites for specific microRNAs. These
microRNAs inhibit translation, reducing circulating MSTN
levels. This observation highlights the need to incorporate
non-coding region analysis into future MSTN research.
Additionally, skeletal muscle hypertrophy in a 7-month-old
boy was reported due to a splice-site mutation at the
boundary of the first intron-exon of the human MSTN gene.1

This mutation disrupts MSTN transcription and causes pre-
mature termination, preventing translation of the bioactive
domain.

To confirm our hypotheses, we generated MSTN gene-
edited sheep with FGF5 knockout using CRISPR/Cas9,
creating MSTN double-allele knockout sheep. The resulting
indels in MSTN led to the deletion of a highly conserved
amino acid, significantly contributing to the DBM pheno-
type5 (Fig. 1I). MSTN promotes skeletal muscle myofiber
hyperplasia through the MEK-ERK-FOSL1 axis.5

However, MSTN inhibition in primates, including humans,
results in less pronounced muscle hypertrophy compared
with mice. This disparity may stem from the non-unique-
ness of MSTN in negatively regulating muscle mass through
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molecule involved in the maintenance and growth of adult
muscle mass. This discovery supports the combined use of
MSTN and activin A antibody inhibitors to treat muscle at-
rophy and wasting disorders. These findings offer valuable
insights and guide future directions for research and ther-
apeutic strategies.
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